On the Contribution of Hydrogeology to the Integrated Water Resources Management of Arid Environments based on Studies from the Middle East

Randolf Rausch

Global distribution of arid regions

Contributions

Assessment of groundwater budget

What are the in- and outflows to the aquifer system?

Assessment of groundwater resources

How much groundwater is (still) available? What is the groundwater quality?

Management of groundwater resources

How can we make best use of the groundwater resource? Is a sustainable groundwater management possible?

Assessment of groundwater budget

Components of water budget

Water budget equation

 $\mathsf{P} = \mathsf{E} + \mathsf{R} \pm \Delta \mathsf{S}$

- P: Precipitation
- E: Evapotranspiration
- R: Runoff
- **ΔS:** change in Storage

Groundwater budget: predevelopment state

Groundwater budget: present state

Groundwater recharge

Natural discharge: springs

Natural discharge from inland and coastal sabkhas

Natural discharge: Persian Gulf

Discharge: agricultural water consumption

Center pivot

Estimation of agricultural water consumption

Calculation of irrigated areas: Normalized Difference Vegetation Index (NDVI)

Estimation of agricultural water consumption

Field survey for agricultural water demand

Direct investigation on site

verifies the previously acquired information and record in addition:

- Crop type present
- Crop condition
- Field size
- Salinity of irrigation and drainage water
- Soil parameters: texture, colour, lithology

Production information

- Total farm size
- Crop acreage, cropping pattern
- Crop yields
- Use of fertilizers and agro chemicals
- Year of foundation and the enterprises perspectives on the future

Water use information

- Well depth and groundwater level
- Irrigation area, type of irrigation
- Number of wells and pumps, capacities
- Total use of water per crop and per year
- Irrigation cycles

Domestic and industrial water demand

- Domestic groundwater consumption 2005: 351 MCM/a (11.1 m³/s)
- Industrial groundwater consumption 2005: 380 MCM/a (12.0 m³/s)

Estimation of groundwater budget

Inflow components:	Uncertainty (%)
Groundwater recharge Wadi inflow	> 100 50
Outflow components:	
Natural discharge:	
Spring discharge	20
Inland and coastal sabkhas	75
Persian Gulf	> 100
Groundwater abstraction:	
Agriculture	20
Industry	15
Domestic water demand	15

Process understanding: poor, moderate, good

Estimation of groundwater resources

Two approaches

Estimation of static groundwater resources

Estimation of static groundwater resources

expectations!

Data:		Uncertainty (%)
	Aquifer geometry	20
	Storage parameter (storage coefficient / specific yield)	> 100
Const	raints:	
Groundwater quality		
Technical and economical possible abstraction:		
	- drilling depth - pumping height - distance to consumer	
The est	imation of total groundwater resources is a	cademically! It leads to wrong

Sensitivity of flow equation in respect to T and S

The first term is always bigger than the second => T is always more sensitive than S!

Groundwater flow model

Change in Storage = $(\pm Q_{Rch} \pm Q_{Riv} \pm Q_B \pm Q_L \pm Q_W) \Delta t$

Solution: h = f (x,y,z,t) Required: boundary and initial conditions

QRch: natural groundwater recharge or dischargeQRiv: exchange with surface water bodiesQB: subsurface flow over boundaryQL: leakage flow from and to adjacent aquifersQW: abstraction or infiltration (e.g. wells)

Groundwater modeling: inverse problem

Given: heads / flows (concentrations)

Wanted: parameter distribution

Difficulties: ill-posedness no unique solution may exist measurement errors make result unreliable

Ways out: joint use of head and flow (and concentrations) measurements

estimation of uncertainty

continuous amendment of model

introduction of 'a priori' knowledge

Aquifer analysis: micro- to macro scale

Aquifer properties: regionalization

Basin scale facies model

Zone of bioturbation = zone of anisotropy

Fining trend = increase of aquicludes and aquitards

10km wide, 50m thick

box dimens

Tectonics

Main anticline structures and faults within the aquifer system

Processes:

1. Faulting

- intense fracturing along anticlines

2. Dissolution of gypsum

- collapse structures
- increase of fracturing

3. Karstification

- dissolution of limestones
- enlargement of fractures

The processes show a positive feedback effect!

Hydrochemical information

Distribution of the total dissolved solids concentration of the groundwater

Hydro chemical evolution of groundwater along flow path

Isotopes information: groundwater age

Simulated travel time to Al Hassa oasis

Mean residence time 12,000 a

Groundwater age Umm Er Radhuma aquifer ¹⁴C-groundwater age and ³H-detection line

Stable Isotopes: $\delta^{18}O$ and $\delta^{2}H$

Climate development

Thousands of years before present

Water management

Tools:

Groundwater models

No Nething

Economic models for costs and infrastructure

а.

34.2

Water demand prognostic models

Groundwater model

Hydrogeological model

Groundwater model

Optimization of abstraction strategy

One big well field in the neighborhood of consumer

+ low transportation costs+ simple implementation

- high pumping costs
- rapid aquifer depletion

Several small well fields in large distance from consumer

- + low pumping costs
- high transportation costs
- implementation difficult

Rotation big well fie the recover

Rotation between several big well fields. Possibility for the recovery

- + long operation time
- maintenance costs for inactive wells

Intelligent scheme makes a huge economic difference!

Water quality: upconing of salt water

deep cone of depression brings up salt water fast!

Constraint for optimization favoring distributed abstraction

Prognostic water demand models

Impact of climate change

Regional climate model predictions for precipitation changes (in %) across the Persian Gulf region compared to the year 1990 (from Hemming et al. 2007)

'mente et malleo'

Thank you very much for your kind attention

'The Geologist' by Carl Spitzweg, 1860

'mente et computer

Thank you very much for your kind attention

' The Geologist' today